Team 9: Kite Power Generator

Andrew Colangelo, Zachary Ezzo, Matthew Hedine, Denitsa Kurteva

Advisor: Dr. Kunihiko Taira

Sponsor: Mr. Jeff Phipps

Presentation Overview

- Project Scope
- How it works
- Conceptual Designs
- Demonstration Schematic
- Challenges
- Future Plans

The Problem at Hand

- Worlds energy consumption expected to increase by 48% by the year 2040[1]
 - Wind turbine
 - Solar energy
 - Nuclear energy
- Water shortage in Greek Islands[2]

Design a power generating kite that will also bring moisture from the air to the ground

Project Goals

- Demonstrate that magnet in electrical coil will generate usable electricity
 - Power a lightbulb
 - Varying tension in line/spring
- Concept for a method for optimization of energy output based on wind speeds
 - Scale for a 100kW kite
- Show commercial potential
 - Efficiency comparison

Constraints

- Altitude between 500 and 1500 feet
- Must deliver AC power to grid
- Limited to off the shelf products
- Optimized for Greek Islands

Figure 1. Picture showing mountainous Greek islands

General Schematic

Figure 2. Jeff Phipps patent of power generating kite (diagram not to scale)[3]

Design Considerations

- Max power generation
- Kite control
- Mobility
- Ease of deployment
- Maintenance

Design 1: Four String Kite

- Advantages
 - Full control over kite position
 - Mechanical winches close to the ground
- Disadvantages
 - Energy loss due to multiple strings
 - Less tension in each line

Figure 3. Four String Kite concept idea (not to scale)

Design 2: Two String Kite

- Advantages
 - Less loss of energy from strings
 - More tension per string
 - Mechanical winch close to ground
- Disadvantages
 - Less control over kite

Figure 4. Two String Kite concept idea (not to scale)

Design 3: In-Air Winch

Advantages

- All tension goes into one string
- Less surface area on ground
- Less hardware

Disadvantages

- Winch higher in air
 - Maintenance issue
- Less yaw control

Figure 5. In-Air Winch concept design (not to scale)

Comparison

Criterion	Baseline	Weight	4-String Kite	2-String Kite	In-Air Winch
Power Generation	0	6	0	0	1
Kite Control	o	5	1	0	-1
Ease of Deployment	0	3	-1	1	O
Mobility	o	2	-1	0	1
Maintenance	0	1	-1	1	-1
Cost	0	4	-1	0	1
Sum	0	-	-5	4	6

Demonstration Schematic

Things to Consider

- Mechanical input
 - Stationary bike
 - Balloon in windy condition
- Spring stiffness
- Magnet strength/size
- Number of wraps in coil

Figure 6. Concept for end of year demonstration (not to scale)

Challenges

- How to vary the tension in the spring/string for varying inputs
- Method to retract the kite safely
- Where to mount the grounding plate
- How to dissipate lightning strike

Future Plans

- Design Selection
- Model system with 2nd order Equation
- Optimization for oscillation
 - Increase spring tension in high speeds
- Select demonstration model
- Water Collector
 - Material
 - Method of transporting water
- Order Materials

Figure 7. Diagram showing fundamental reason for water collection[2]

Gantt Chart

Table 1. Gantt Chart for semester

References

- [1] http://www.eia.gov/todayinenergy/detail.php?id=26212
- [2] http://www.climatechangepost.com/greece/fresh-water-resources/
- [3] https://www.uspto.gov/patents-application-process/search-patents
- [4] http://www.conserve-energy-future.com/Disadvantages_SolarEnergy.php
- [5] https://www.windfinder.com/weather-maps/forecast/greece#6/38.367/23.810
- [6] http://www.kitenergy.net/technology-2/key-points/
- [7] https://adrienjousset.wordpress.com/2009/09/15/kitano/
- [8] https://www.ted.com/talks/saul_griffith_on_kites_as_the_future_of_renewable_energy?language=en

Questions?